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Problem formulation

[_ Parameters of the model
1

n
min T) = — Z (0
min ¢ £(z) = 3 3 i)
Non-convex loss _} L Clients

Goal: finiding an approximately stationary point of the nonconvex problem — a (random) vector X € R9 s t.
E[|IVf@)I°]1< €7,

all while minimizing the amount of communication between the n clients and the server



Communication Complexity in Distributed Training

» Key effectiveness metric: communication complexity

Number of communication rounds to find X
X

Amount of data exchanged per round

e Assumption (standard in literature): client-to-server communication
is a bottleneck



Communication Complexity Reduction

Reduce number of communication rounds Reduce amount of data exchanged per round

* Momentum * Compression
e Acceleration

* Local Training

Most of the common compression techniques: sparsification and
guantization

* Sparsification methods reduce communication by only selecting an
important sparse subset of the vectors to broadcast at each step

* Quantization methods quantize each component through randomized
rounding to a discrete set of values, preserving the statistical
properties of the original vector



%’ Contributions

* We extend the analysis of the SOTA distributed optimization method
MARINA beyond independent quantizers

* Prove better communication complexity of MARINA with Correlated
Quantizers (CQ) in the zero-Hessian-variance regime

* Compare against strong independent quantizer baselines

- 4 Experiments validate the theory



%’ Contributions

* We compare two distributed algorithms using correlated quantizers:
MARINA and DCGD

*In the zero-Hessian-variance regime, MARINA shows significantly
lower communication complexity

* This makes MARINA the superior choice in this setting

* \'4 Our experimental results confirm the theoretical findings



%’ Contributions

* We show that Correlated Quantizers (CQ) achieve much lower Mean
Squared Error (MSE) —
by a factor of n compared to independent quantizers on
homogeneous data

* We also provide insights into why CQ are especially effective
when combined with MARINA in the zero-Hessian-variance regime

* These findings highlight the theoretical and practical benefits of
using CQ in distributed optimization



MARINA: SOTA method

1: Input: initial point 2° € RY, rate v > 0,
probability p € (0, 1], number of iterations T°
2: g° = V()

3 fort=0,1,...,T—1do

4. Sample ¢; ~ Bern(p)

5:  Broadcast ¢’ to all workers

6: fori=1,...,n in parallel do

7. gt = gt — gt

8: gl = Vfi(z") if ¢ = 1, and g/ =
g+ Qz(sz( 1) — V fi(x?)) otherwise

9:

end for
10: gt+1 — lzn 1gH—l
11: end for

12: Output: 27 uniformly from {z!}1-

E. Gorbunoy, K. Burlachenko, Z. Li, P. Richtarik. MARINA:
Faster non-convex distributed learning with compression
ICML21

Given n vectors ar, . . ., a, € R, Mean Square Error (MSE)
associated with the set of randomized compressors { Q; }7*

is the quantity E [H LS 1 Qi(a) — 250, aiHQ] :

e Theoretical complexity of MARINA grows with MSE
* Crucial to identify compressors with low MSE

» Typically, there exists a trade-off between MSE and
communication cost



Zero-Hessian-Variance Regime

Let L+ > 0 be the smallest constant such that

%Z IV fi(x) — VEWIP = |V £(z) - V@)

2
<Lilz-yl®, =yeR™

The quantity L% is called Hessian variance.

* L, = 0 extends the case where the clients are homogeneous or nearly homogeneous
* Achieving the zero-Hessian-variance regime in practice can be challenging

* Practical problems can indeed have L values very close to zero



Correlated Quantizers

One-dimensional

=)

T e RE

Input: a1, as,...,a,,l,7 € R; Vi € [nl], a; € |, 7]
Generate 7, a random permutation of {0,1,...,n — 1}
for: =1tondo

ai—l

Yi = =1~
U; = 7+ + ;, where ~y; has a continuous
uniform distribution U[0, 1/n).

Qi(a;) = (r — 1)1y, <y,

7: end for

Olltpllt: % 2?21 Qz (CLZ)

A. Suresh, Z. Sun, J. Ro, F. Yu.
Correlated quantization for
distributed mean estimation

and optimization
ICML22

Multi-dimensional

Assume that each a; is a d-
dimensional vector and
that Q; quantizes each
coordiante independently



MSE of quantizers on homogeneous data

Assumea; =a, L= —|la||, r = ||a|| Independent Quantizers (1Q)

One-dimensional
Q:(a;) = with probability 2=,
and Q;(a;) = l otherwise

Theorem: MSE of CQ

CQ {9;}", are individually unbiased and Multi-dimensional

the MSE of quantizers {Qz ?21 associated Assume that each a; is a d-dimensional
. n vector and that Q; quantizes each

with the set of vectors {a;}", can be coordiante independently

bounded from above in the following way:

dllall?

i ? d”a”2 In contrast, the upper bound on MSE of IQ is
E\ > a; — Qi(ay)] | < o ‘
—l




Communication Complexity of MARINA

Let L+ = 0. Denote by C.,; the communication complexity
per client in MARINA with CQ. Similarly, denote by Cing
the communication complexity per client in MARINA with
IQ. Then

That is, Vp € [0,1], Ccor < Cing- In particular, we
show that C.o, = O AL mip {d, 1+ %}) and Cijpg =
_1_

O (AEOQL min {d, 1

* Experiments suggest that whend =n > 1,
the complexity ratio is approximately 7.29

* The ratio can reach up to 32

An Improvement Factor (IF) is a ratio of
complexities of MARINA and GD
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Logarithmic speedup of
MARINA with CQ/I1Q
over GD.

(c): Logarithmic speedup
of MARINA+CQ
compared to
MARINA+IQ

(a) MARINA+IQ defaults to GD when n « d and achieves the best possible speedup of X32 (owing to the

compressor's 1-bit per coordinate behavior) when n > d.
(b) CQ are distinguished by d = n?

(c) €Q surpass 1Q by up to a factor of X32 whenVd <n < d.



Correlated Quantizers in
Zero-Hessian-Variance Regime

Table 1: Comparison of communication complexities of different distributed methods combined with different quantizers
in the nonconvex regime with homogeneous clients (see Section 3.2), when d < n. In the homogeneous scenario, L_ =
L, = Land Ly = 0. Notation: A = f(z°) — f*. Abbreviations: CQ = “Correlated Quantizers”, ISCC = “Importance
Sampling Combinatorial Compressors”, IQ = “Independent Quantizers”.

Method Quantizer Communication Complexity Correlated Compressors Reference
DCGD  IQ, Def.6 o (24L) X Suresh et al. [2022]
DCGD  CQ, Def.7 16 ( LgL) Suresh et al. [2022]

MARINA  D%E Def.3 O (2 min{d,1+ L}) X Gorbunov et al. [2022]
MARINA  IQ, Def. 6 o (A;L min {d, 1+ %}) X Gorbunov et al. [2022]
MARINA 15CC, Asm.6 O (253¢min {L, L 4 Y25 Laxa 1) X Corollary 4, this work

MARINA  CQ, Def.7 O (& min{d, 1+ 2}) Proposition 4, this work

Table 2: Comparison of important characteristics of different quantizers in the nonconvex zero-Hessian-variance regime and

when d < n : bits sent per client and MSE (Mean Square Error, Section 3.1). Notation: ng’; — Standard Dithering, Dsfl;l -

q,k

Ternary Quantization, D, — Natural Dithering.
Quantizer Bits Sent MSE Correlated? Reference
D% Det.2 O (k(k+Vd)) ] P Alistarh et al. [2017]
Dgra s Def. 2 31 + dlog, 3 d-1 X Wen et al. [2017]
DLF Def.3 31+ dlog,(2k + 1) 4 X Gorbunov et al. [2022]
1Q, Def. 6 32+d ﬂl%ﬂi7 Cor. 1 X Gorbunov et al. [2022]
CQ, Def. 7 32+d ﬂL%“E, Cor. 2 Suresh et al. [2022]

n =1 w;

ISCC, Asm. 6 = (% S, - B) la||? , Asm. 6 X Corollary 4, this work



Baseline Comparison on Quadratics
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Experiments on quadratic optimization tasks with varying smoothness constants

Enables control over L, values

d = 1024, n = 128, regularization A = 0.001, noise scale s € {0, 0.5, 1.0}

CQ outperform 1Q and are on par with DRIVE even in tasks where L, substantially deviates from 0

Theory only for L= 0, no theoretical stepsize when L, > 0



MARINA + 1O MARINA + CQ DCGD + 1Q

MARINA + DRIVE
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* We increment the step size in

multiples of 2 (2, 4, 8, ...) of the
theoretically optimal step size.

Our aim is to identify the step size that
ensures the algorithm's best
performance at 4*10”76 bits
communicated from each client to the
server (sufficiently large to
demonstrate relative convergence
between different algorithms).

The convergence plots, as well as
details about the selected optimal
step sizes.



)

Non-Convex Logistic Regression
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e LibSVM datasets are partitioned into n = d uniform segments
* Included DGD, MARINA+DRIVE, MARINA+CQ, MARINA+IQ
* L4 > 0, calculation is infeasible

* Ourapproach is mostly dominant even in L > 0 case against a strong baseline
MARINA+DRIVE.



Loss

Experiments with an MLP
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Experiments with an MLP classifier on the
a9a dataset with 131 clients

MARINA+CQ exhibits reduced complexity

compared to MARINA+DRIVE, DCGD+IQ,
MARINA+IQ.

MARINA+CQ accommodates larger step
sizes due to lower compression errors
compared to MARINA+IQ, resulting in
faster convergence in terms of loss.



Experiments with an MLP
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* We provide the optimal stepsize selection procedure for the
MLP classifier experiment on the a9a dataset, involving 131
clients.

* The largest step size was chosen such that the median of five
optimization runs still converged.

# of bits sent per client le8

# of bits sent per client le?



Thank you! Questions?



